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RELAXATION-TYPE EQUATIONS FOR VISCOELASTIC MEDIA
WITH FINITE DEFORMATIONS

V.I. KONDAUROV

The representation of the total deformations in the form of a composition
of elastic and irreversible components is considered to describe finite
deformations of viscoelastic materials of relaxation type. According to
the method of internal parameters, it is assumed that the thermodynamic
potential, the stress tensor, the entropy density, the thermal flux, and
the rate of change of inelastic deformations are functions of the total
deformation, the temperture, the temperature gradient, and the irreversible
deformation. On the basic of requirements for invariance of the governing
equations, a definition of isotropic ideal and hardened viscoelastic bodies
is given. Necessary and sufficient conditions are formulated which the
equations of state of such media should satisfy. The propagation of
isothermal waves of weak discontinuity in an ideal viscoelastic medium with
small elastic and finite total deformations is considered as an illustration.

The governing relationships of relaxation-type considered below occupy an intermediate
location between the equations of media with infinitesimal memory and equations of state with
weakly damped memory of general form in the degree of generality /1/. The simplest equation
of this kind is the cne-dimensional Maxwell equation. Its distinctive generalizations, a survey
of which can be found in /2—4/, reduce in purely mechanical theory mainly to the consideration
of the spatial state of stress and strain and the introduction of time derivatives of the
stress and strain tensors of order higher than the first, For finite deformations the problem
arises of selecting the preferable form of the objective derivatives.

An approach based on introducing generalized Maxwell's equations for not only the stresses
but also for the other rhecleogical relationships of a thermodyvnamic nature has not been applied
extensively in the thermomechanics of viscoelastic media cf relaxation type. The method of
latent, or internal, parameters /5/ has turned out to be more generzl and fruitful. In
conformity with this method, the running state of a material particle is described not cnly by
the deformations, temperature, and temperature gradient but alsoc by the internal parameters.

A system of additional rheological relationships are introduced for the latter. As a rule,
these relationships are crdinary differential eqguationg with initial data. Integration of the
equations for the internal parameters for given prehistcries of the deformaticn, temperature,
and temperature gradient show that all the rheclogical characteristics are functionals of the

cdeformation process, but functionals ¢f a particular kind governed by the sclution of the
above-mentioned problem with the initial data.
A set of N tenscrs of the irelastic components of the jradient of a non-degenerate nap
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of the reference configuraticn of the body into a real configuration is taken ir this paper as
the internal parameters of the state of the medium. Such an approach, in which the gradient

of the mapping is represented as the preduct of the instantanecus elastic and N inelastic
components 1is a generalizaticn of the expansion that is utilized extensively tc describe
Kinematically elastic-plastic media with finite deformations /6—8/. It enables one to take

inte account phenomena that are characterized, in the linear case, by the spectrum of &
relaxation times.

Furthermcre, without relying on assumpticns of a particular nature (such as the assumption
that the defcormations are small), the constraints imposed on the governing relations by the
inequality of the entropy and invariance reguirements are studied. In additien tc the well-
known invariance reguirements of the governing equations for the replacement of the reference
system (the objectivity principle! and the orthogonal transformations by an undistorted reference
configuration {(material isctrcopy 1/, invariance relative tc orthogonal transformations of
Euclidean spaces of instantaneously unicaded intermediate configurations
at this point of the body is used in a substantial manner. The latter is none other than
assurpti@n /8/ that the motion as a r‘vld who’e has no influence on the rheclogical character-
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a unique answer to the question as to what is the specific form of the functions in the equations,
but substantially narrow down the class of allowable equations of state. This is particularly
so when there are additional constraints, as is illustrated in the example of an isothermal
ideal viscoelastic medium with small elastic but finite total deformations.

1. Kinematics. Let X be the radius-vector of a material particle of a body in a
reference configuration (RC) %, X in a real configuration (AC) X, corresponding to the running
time t, such that

x=x(X,#), dx=F(X,t)dX, A=detF=£0 (1.1)

The tensor F is the gradient of the non-degenerate mapping (1.1}, and the vector v =
dx (X, #)/8t defines the velocity of the material particle.

If the mapping (1.1) is twice continuously differentiable, then a local conservation law
holds for the compatibility of the velocity and total deformation fields which is written in
the variables X, ¢t in the form (I is the unit tensor)

FF—Diviv@I) =20 (1.2)
In addition to the RC and AC of the body we introduce N intermediate configurations (IC)
g, = 1,2, ..., N, N> 1. The particle radius-vector X in these configurations equals

Xo—=Xo Kaen 1), Xo=X,a=1,2..,N

We consider the mapping ¥g-; —> % as one-to-one and sufficiently smooth. We denote the
gradients of the mapping g, > % Dby Ps so that

dXo = Py dXq.,, detPy£0 (1.3)

and we call the gradients inelastic mappings.

Here and henceforth there is no summation over g if not specially stipulated.

In contrast to the RC and AC, the IC of a body belongs to a non-Euclidean space in the
general case. Conseguently, the tensors of the second rank P, should be considered as the
mapping of Euclidean spaces tangent at a given point X to three-dimensional spaces containing
the configurations x,.; and #;. The tangential Euclidean space can be treated as a space in
which the IC of a homogeneously deformed body would be found with deformations egual every-
where to the deformations at the point X.

If E denotes the gradient of the non-degnerate mapping xy —%. which we shall call the
gradient of an elastic mapping, then it follows from (1,1) and (1.3) that

F == EPxPn.y... PPy (1'4)

The introduction of the IC %, and the representation (1.4) of the gradient F in the form
of gradients of an elastic and irreversible mapping is used extensively to construct models
of elastic-plastic bodies with finite deformations /6~8/. As in the theory of plasticity,
the expansion (l1.4) does not govern the order of the elastic and viscous deformation processes
in time, that are simultaneously developed physically in the body.

Since all the mappings utilized are non-singular, then by using the theorem on the polar
decomposition of a tensor of the second rank, we can write

F=RU, E=RU., Pi=H.W, (1.5)
where R, R,, H, are orthogonal and U, U,, W, are symmetric positive-definite tensors.

2. Governing relationships. we will consider homogeneous thermoviscoelastic materials
of relaxation type. It is assumed that the state of a material particle X at the time t is
given completely if the following set of guantities is known

(X, 1y = (F(X, 1), P (X, 1), 60X, ). y (X, 1)} .1

where g is the gradient of the scalar field of the absolute temperature 6> 0, so that df =
ydX. We will call the family of states parametrically dependent on t a generalized process
of particle deformation.

The governing of rheological equations of the materials under consideration are finite,
non-differential relationships

A=A"() T=TQ) n=00) q=q@) 2.2)
and the evoluticnary eguations

o, P, =0 a=1,2,.. N €2.3)

The quantities A4, n in relationships (2.2) are the free energy density and the entropy,
T is the Cauchy stress tensor, and q is the thermal flux vector. The tensor functions of
second rank @, relating the rate of change of the gradients P, to the running state of the
particle govern the equations for the rate of production of the inelastic deformations.

Let K = const be the gradient of unimodular transformations of one RC % into another
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RC %’ If the governing egquations (2.2), (2.3) do not change form during the mapping » — x’,
then such two configurations are called equitable while the mapping ®#-—->x" is the eguitability
transformation /1, 9/. Taking into account that on replacing the reference configuration

F—FK,P,—»PK,P,—P;, P '—P’K y— K’y

$=23,...,N
we find that the equitability conditions for x and %' are the relationships
A"(F, Py, Py, 0,9)== A" (FK, P, P1K, 0, KTy), ..., ®y(P/K, ) =0 (2.4)
Gy (P, )=0

The gradients of the equtability transformation generate a group that we denote by g,.
Let @ =Q(#) be an orthogonal tensor which is the gradient of the transformation of one
AC % into another AC X’ for fixed RC and IC. Under such transformations

F—QF, Py—P,T—QTQ", q—Qq, 6—0,y—7

and by virtue of the principle of objectivity /1, 9/, the following equations hold for values
of the governing mappings (2.2), (2.3)

A™(QF, Py, 8, 9) = A" (F,.), T*(QF, - )= QT* (F,-) Q7 2.5)

T}"(QF,'):’Q‘V(F,-), q‘(QFv')qu#(F"}'

q’a(Pa'aQF,‘)L‘O; a:i,z,_.,,hv

We will now consider the transformation of any intermediate configuration x,. If Zg=

Z, (X, t) (det Zg = 1) is the gradient of the unimodular transformation x; %, then for the
remaining fixed configurations the connection between the arguments (2.1) of the governing
relationships has the form

F—F, Py—Ps Po—ZiPy Pon— P23, 0--8
yv—9 PB=1,2,...,N, Psa,a+1
As before for the reference, for the intermediate configurations we introduce the
definition of equitability, in conformity with which two intermediate configurations #, and %
are equitable if the transformation x, —> %, leaves unchanged the value of the thermodynamic.
potential, the Cauchy stress tensor, the entropy, end the thermal flux and the form of the
evolutionary equations does not change, i.e.,

A (F, Py, ZoPo, PuaiZs' 0, 9) = A (F, Py, Py, Puir 6,9), .. ., (2.6)
q)ﬂ (Pﬁ‘a F: Pﬁ, ZaPan Paﬂz;ls 0‘ '?) = 0,
Do (Zo'Po + ZoPs’, ) ==0,  @guy PoyZet + PoyyZ3}, J==0

The transformation gradients %, in the equitable configurations m,’,%,”,... generate a
group which we denote by g, .

We define an isotyopic viscoelastic body of relaxation type as a material in which the
reference configuration u, exists with an equitability group that contains the complete
orthogonal group o; the latter alsoc belongs to the eguitability groups of all the intermediate
configurations. In other words, in the case of an isotropic material

0= Ly O &ys = 1,2,.. N
Since o0& g, = #, u is & unimodular group, then either g, =0 ©r g, =u as is shown

in /10/. Analogously, g, = ¢ OF &, = &- Conseguently, even in the simplest case when
N =1 and there is one IC, four kinds of materials are possible, governed by the relationships

o, == By, =05 G U G, =0 £y, =20, i, TTU, Eu== gy, == U
We consider two viscoelastic materials of relaxation type. The first is determined by
the condition
Buy = Bxy = 02 0= 1.2,.. . N (2.7)
and will be called a hardening viscoelastic body. It is assumed for the second that
g'/.:gv.ﬁ:lh Buy = O» p=14.2,..., N ~—1

This material will be called an ideal viscoelastic body.
For a hardening viscoelastic body(2.7) it is necessary and sufficient that the gcverning

equations have the form

A== A" (A1), T=RT (A)RT, w=1n"(h), q=Rq (M) (2.9)
Vo' = Wo (k1)
and that the following isotropy properties be satisfied:
AT (M) = A" (9, QT (h) Q7 = T* (M9), (2.10)

) =71 (M9, Qq () ==q" (19), Q¥a(t1) Q" = Wo (MY
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Here
M(X, 1)y={U, Vs, 0,7} 2.41)
T
M2={QUQ", QV.Q". 6, Qy)
V=W, Vyos(HaHoo. . . H)" Wy (HeHoo .. . Hy)
Cc=2,3,...,!’\.7
To prove the necessity of (2.9) and (2.10) we ocnsider the invariance conditions (2.4
with respect to the constant orthogonal transformation of an undistorted IC. Assuming the
transformation gradient K = RT (X, f), X; = comst, f, = const, we obtain

A=A"(F, Py, P8, 1) =4" (RURT, Py, RT, 8 Ry),..., 2.12)
@ (P/RT, ) =8, @ (P, ) =0
B=23...4

Now let 2z, (%, #= R(X, ) B (X, H(¢< t) be a time-dependent gradient of the transformation
of the Euclidean space tangent to the IC » at the point X. This transformation is orthogonal.
Its time-derivative has the form Z;(th)==R(X,%)Hf"(X,tL Then conditions (2.6) applied to
{2.12) yield

A= A {(RURT, Py, P, RT, RW,RT, 6, Ry),,..., ©;, (RWRT, .y =0 2.49)
3 .
0.2 P xR, )= 0.0, (B, =0, B34, N

Analogously sequentially examining the orthogonal transformations
Z, (X, =RX, th B X, B X, 1) ... BT (X, 1)

o2

of the Euclidean spaces tangent to the IC x, {(x=2,3,..., N) at the point X we arrive at the
necessary form of the governing sguations

A=A 0B, T=T'05, a=a"0" a=cnh
®, RV, RT, 4,F) =0
where ME is given by (2.11).
If the equations for the rates of production of the inelastic deformations allow of a
form solved with respect to the time derivatives, then
RV, RT =¥, )
Hence, tkaing the objectivity principle into atcount we obtain (2.9) and (2.10}, for
Q@ =RT (X, o).
The sufficiency of the forms (2.9), (2.10) of the governing eguaticons for the satisfaction

of {2.7) and the validity of the objectivity principle follows fromthe direct substitution
into (2.9) of the formulas

F* = QFK = (QRK) (KTUK)
Pt = Z P2l = (2 H 2T V(Z, W, Il ), Z=K
R*=QRK, U*=K'UK
P - ;T
Hy*= ZaHa‘igwx* Wt =2,y WoZa

obtained taking the unigueness of the polar expansion and the definition (2.11) of the tensors
YV, into account.

In the case of ideal viscoelastic media, it is necessary and sufficient for the satisfaction
of conditions (2.8) and the objectivity principle, that the governing relationships have the
form

A=A"(hy), T=RT"(A)R", Mm==0"(hs), q=Rg*(hs) (2.14)
VAV =W¥a(a), Va'Va= Vi, .. VW (ha) Vn ... Voo
a::i,2,...,N~«»i
where 4%, T*, 1%, ¢* and ¥, are isotropic functions, i.e.,
At = A7 (9, QT QT =T (19, (2.15)
T ) =7 (29 Qq' () =g (M%), Q¥a(h)Q" = ¥q (A9
Here
he (X, t)={B, A, 6, B0}, 3,0= (QBQ", Ay, 6, QBV0} (2.16)
B=UVDIVI | VY, Ac=detPy==detV,
To prove the necessity of (2.14), (2.15), the unimodular transformation of the RCx with

the constant gradient K = A®(X, &) P71 (X,. 5,), the unimodular transformations of the IC«x, (B=1,2,
.. ¥~ 1) with the constant gradients 25==A§4(X9,%)Paﬂ(xo,hh the orthogonal transformation

xy with the gradient Zy (= R%) H,T (1) .. . By () HyT (# and the objectivity principle should
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be considered for Q (1= R7 (X, 7. The equations for the production rates of the inelastic
deformations are here convenient to use in a form equivalent to (2.3)

3
oy [W (PNPy., - Pg), F, P, 8, 'y] -0

a,B=1,2,. .., N,

The sufficiency of (2.14) and (2.15) for the satisfaction of the objectivity principle
is evident. To prove the sufficiently of (2.14) and (2.15) for the satisfaction of (2. 8),
the fact that (2.14) is a narrowing of systems analogous to (2.12) and (2.13), whose sufficiency
is clearly seen, should be used.

We will consider constraints on the governing relationships of viscoelastic bodies of
relaxation type that are imposed by the second law of thermodynamics

—pA —pnf" + tr (TFYF) + 671gV6 2> 0 (2.17)
Assuming that the functions 4%, T*, 1", q* and ¥, are defined and continuously differentiable
in an open simply-connected domain of the variables {F,V,, 6,y} it can be shown that

a4+
a0

—pR—_RT

A=A*(U,Vq,0), 1=
64

(2.18)
T::p

I\
94" 1 -
a=1

It is seen from (2.18) that the inequality (2.17) for the materials being studied will
result in partial splitting of the temperature gradient and strain-stress effects, the entropy
and the free energy are independent of V6.

For the case of an ideal viscoelastic body, the relationships (2.18) allow of greater
simplification. To execute them we note that the non-degenerate tensor B is non-symmetric
in the general case. Consequently, B = QS, where Q is an orthogonal, and S a symmetric
positive~-definite tensor. For them the relation

Q=R'RH, S=H'UH, H=HyHy,... H

follow from {1.4) and (1.5) and the uniqueness of the polar expansion.

The free energy density A* as a function of S, is independent of Q.

To show this we consider the particle deformation process X =X, for ¢;t, for which
all the arguments of the state are unchanged, except Q. Then

aA*

A= 51;)(1 6() OIJ = aiOU O” B b

Since
T= pR BTRT
then by virtue of the symmetry of the Cauchy stress tensor

pA"=tr [(R"TR)Q] =0, Q=QQ’

Here and henceforth the subscript notation is used in Cartesian orthogonal coordinates
in those relationships where tensors of the third and higher ranks appear.
I1f isotropy of the function A% is used, then the dependence on $ can be represented in

the form
A=A (e,00,8), e=—1(I—F'TVVTF (2.19)
V=ViVs...Vy, V£ V7
from which it follows that
T =p (I — 2e) 34,/5e (2.20)
3. Example. We will consider the important practical case of an ideal viscoelastic
medium with small temperature gradients and small elastic deformations that build up in a

background of large irreversible deformations and large rotations. For simplicity, we will

limit ourselves to the case when N = 1. .
I1f the symmetric part U, of the gradient E tends to one, then F = R UHW — RHW, where
W=W, H=H; and, therefore U— W,R—RH. Introducing the tensor & of small elastic

deformations such that
U=W-+e es=¢”, et (3.9

we find that the following tensors are also small
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B—TI=egW?!, B! I=WTe (3.2)
e=1,R (W + Wg)R"
The expansion of the free energy density (2.19) in a Taylor series in the neighbourhood
of e =10 to second-order term accuracy, taking the isotropy A; and the relation (2.20) into
account can be written in the form

PeAs = PyAo (B, A) — py (6, AY I, + /2 1 (6, A) I + (3.3)
p(6, A) I,
=AM, I=tre, I, =tre’
where py = po/A is the density of the material in the IC%,,T, = —p I is the Cauchy stress

tensor in this configuration, XA, p are scalars possibly dependent on § and A, It follows
from (3.3) and (2.20) that

T — (1 — L) pJ + ALT+ 2(u + py) e (3.4)
a4 1 ép
== + % 5

wWe consider the eqguation for the rate of production of the inelastic deformations
WWTI=W(B, A, 6 BV
For small temperature gradients it follows from the symmetry of the isotropic function
¢ (B, W,8,V0)="(B, A0, B ve W
that 8¢/d (B™1TV8) |vg—g = 0.

This means that ¥ =¥ (B, A,8) in a linear approximation in V0.
By virtue of the smallness of the elastic deformations defined by (3.1) and (3.2}, we
have the following functions continuously differentiable with respect to B

v, .
iy (B0, 0) = Wi lemo | (Bio— ) O (e [)

where it follows from the isotropy of second- and fourth-rank tensors

lP‘ij }(‘:0 = ¢0 (B: A) 61’)’

oY, Fi 3 }6415 ; éinéjb . 5:'&6;‘.;
oB

ab €=0: 3‘7. ©,3) - Tu (8, 8) - Ty 8, A)

Taking. into account that tr (B —1I) = tr (eW™!) = tre = I, while {1 '1,= 0 follows from the
symmetry of W' we find the final form of the equation for the rate of production of the
inelastic deformations of an ideal viscoelastic material with small elastic deformations and
small temperature gradients

- . , I R 1 v - 3
W ={qo(e, N+ R }\\ + e (U W) (3.5)

We analogously obtain the Fourier law q = k, (0, A)V0 with a scalar thermal conductivity
possibly dependent on the temperature and the volume inelastic deformation for the heat flux
in the approximation under consideration.

As an illustration, we calculate the velocity of propagation of a weak discontinuity
wave in the material under consideration. In addition, we assume that the process is isothermal
and proceeds at the temperature 6, of the RC, and the ICx is an unloaded configuration with
zero stresses, A=14, i.e., there are no bulk inelastic deformations. Then +,=0, 7,71+ =
0, &, p, 7, = const, and (3.4) and (3.5) reduce to the form

U N 1 .
T LI+ 2ue, W =?{L_<1+.3_,1>“7}, o (3.6)

From system (3.6} we obtain the following differential equation (T'=T—1{trT)I 1is the
Cauchy stress tensor deviator):
T + 1T = A te (Vv + eVv) [+ p (Vv -+ VvT + eTv + VvTe) (3.7)

It is hence seen that when the deformation process halts at the time = ¢, i.e,, for
Vv =0, the global part of the stress tensor will remain invariant while the deviator relaxes
according to the law

T () = T {#) exp (— (¢t — )/}
Appending the equation of motion of (3.7)
pv' — div T = pb (3.8
and taking into account that e is expressed in a linear manner in terms of T from the first
relationship in (3.6), we obtain a closed system of eguations in the variables v, T.
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Let ¢{x,7)=0 be the equation of the weak discontinuity surface D = —|Vg¢|?og/ot, n==| Vg
V¢ the propagation velocity and unit normal to the surface. Let ¢=D - v.n be the propagation
velocity of the surface relative to the particles of the medium, and V = [av/on]_*, s::laTMni*
E = [de/dnl_* are jumps in the normal derivatives of the velocity vector, the Cauchy stress tensor,
and the elastic deformations tensor. For c¢=0 it follows from (3.7) and (3.8} that
aV — b (V+ 6M)n — peV = 0 (2.9)
a=pf—p b=kt p b=lel=(trey
m=en$, N=V.n, M=V.m
In the zeroth approximation corresponding to e= 0, Eg.{(3.9) takes the form g,V <+ bNn = 0.
from which ¢, =% and V= An or N=0,4,=0 follow.
The first case describes a longitudinal wave with amplitude vector of the weak discontinuity
of the velocity collinear with n so that

peg? = & = 2u, V= An
The second case corresponds to a transverse wave on which
prt=p, Vem=10
Let I=een/8?, [l}=0(), L=1.n. If the vectors n,m and ! are linearly independent, then

by convoluting (3.9) with n,m and 1 and using the Hamilton-Cayley theorem, we arrive at a
system of three linear homogeneous eguations
b—a)N-=-8(d—wWM=0 (3.10)
b (m-a) N+ [8b(m.n) — a] M+ SpL =0
[b(1-n) + Syl N = 8o (1-n) — pdy) M — [6u), —al L =0
Jy=20tre, J,=1,[J2—02tre?], Jy=~0%dete
From the fact that the determinant of the coefficient matrix of system (3.10) vanishes
when g, 0, it follows in a linear approximation in § that a= ay+ 8a;=0b-+ 8 (h+ p)(m-n} or
== (7, -+ 2n) (1 4+ n-en) (3.11)
The weak discontinuity waves propagating at the velocity (3.11) can be called guasi-
longitudinal waves since the polarization of such waves is determined by the formula

Vo= Ty (n = Sub™im)
When gq,= ( we have g= 8¢, ~ 0 (8. The equation
2 — p{Jy—m-n)ay =P/, — Jim.n +- l-n) =10

is obtained for g,, whose solution is

4(J.=1n) }

a;z%{h—m-n:(hj‘-m-n)[1—«m

In order to show the non-negativity of the radicand in the solution (3.12), we use an
orthonormalized basis that agrees with the triplet of eigenvectors of the tensor e. Then the
non-negativity condition reduces to the inequality

3 3
2,0 9 R 9y N2 D 2
e 2 (1 —2n3) e, _|2P‘v1 =z
=1 i=1

to —~ FI'A“’
-+

2

€32 (1= np?)2 eg? + 2 (ny2n,2 — ny?) ere, -

He.eg >0

|

=
"o

T "
~ .
T
- [ -

|

The symmetric quadratic form under consideration will be non-negative if and only if
all the minors of the determinants symmetric with respect to the main diagonal of the
coefficient matrix are non-negative. We find by a direct calculation that all the second-
order minors equal 4minn® > U, and the third order minor equals zero. Therefore, the
guadratic form is non-negative and the propagation velocities under consideration

. » ) ) 4(Jsfiei?+—en-en) 'z
pet = p g {tre—n-en:(uefn-en) [1-4———-—(11‘[615’:_“*“)2 J }
are real guantities. In contrast to the zeroth approximation, these velocities are not
multiple for e}z U. The polarization of such waves is determined by (3.10) in a unigue

manner, and in particular, is characterized by the fact that the vector of the weak discontinuity
of the velocity has a normal component proprotional to b&=tlel This property enables us tc
call the waves guasitransverse.
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DYNAMIC PROBLEMS FOR A PLANE AND CYLINDRICAL VISCOELASTIC LAYER PARTIALLY
ADHERENT TO A STIFF RING"

S.I. GRITSENKO

The plane problem is examined of the shear-vibration of an infinite stiff
viscoelastic layer covering that adheres partially to an undeformable
cover-foundation: rigidly along a strip of width 2a, and in frictionless
contact outside this strip. 1In addition, an analogous axisymmetric problem
is considered for a cylindrical viscoelastic layer. The layer is
partially adherent to a ring alcong one surface: rigidly along a band of
width 2a and without friction outside this band, and it is rigidly adherent
to a ring vibrating in the axial direction along the other surface.

Mixed boundary value problems reduce to the solution of an integral
equation of the first kind which reduces, in turn, to an infinite system
of linear algebraic equations. Certain results are presented of a numerical
solution of the problems posed. Solutions are compared for the visco-
elastic and corresponding elastic problems. The efficiency of two methods
of solving the integral equation, reduction to an infinite system and
approximation of its kernel, is compared for the latter problem.

1

1. We examine the plane problem of steady vibrations of a viscoelastic layer 0 <{z<Ch
|z | << o0 lying on an undeformable foundation z = 0. The layer is rigidly aherent to the
foundation along the strip |z |<{ e of width 2a and makes friction-free contact outside this
strip. Along the whole upper boundary z = h the layer is rigidly aherent to an undeformable
covering vibrating in a tangential direction (problem A). The boundary conditions of problem
A have the form

uy (z, by 8y = Ugeiot) u, (x, b, £) =0
u, (z,0,6) =0, |z |<<oo
U (2,0, 8) =0, [z | << a; 7, (2,0,8) =0, [z | > a

In addition to problem A, we consider an analogous axisymmetric problem for a viscoelastic
cylindrical layer R,<{r<{R,, |z |<{o (the third cylindrical coordinate z is replaced here
by z for uniformity in the subsequent calculations). The cylindrical layer is rigidly adherent
to a fixed undeformable ring along a strip |z |<{a of width 2a at its inner surface r = R,
and abuts it without friction outside the strip. Along the whole external surface r = R, the
cylindrical layer is rigidly adherent to an undeformable ring vibrating in the axial direction
(problem Bl). The boundary conditions of problem Bl have the form

uy, (R, z,t) = Ugemot, u, (Rp, z,t) =0

u, (Ro, 2, t) = 0, |z | << o0

uy (Roy 2, 8) =0, [z < a; tx (Rpy 2, 8) =0, |2 | >a
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